
Package: supportR (via r-universe)
October 22, 2024

Type Package

Title Support Functions for Wrangling and Visualization

Version 1.4.0.900

Date 2024-06-13

Maintainer Nicholas J Lyon <njlyon@alumni.iastate.edu>

Description Suite of helper functions for data wrangling and
visualization. The only theme for these functions is that they
tend towards simple, short, and narrowly-scoped. These
functions are built for tasks that often recur but are not
large enough in scope to warrant an ecosystem of interdependent
functions.

License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.1

URL https://github.com/njlyon0/supportR,

https://njlyon0.github.io/supportR/

BugReports https://github.com/njlyon0/supportR/issues

Depends R (>= 3.5)

Imports data.tree, dplyr, ggplot2, gh, googledrive, graphics,
lifecycle, magrittr, methods, purrr, rlang, rmarkdown, scales,
stringi, stringr, tidyr, vegan

Suggests ape, devtools, knitr, palmerpenguins, testthat (>= 3.0.0)

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://njlyon0.r-universe.dev

RemoteUrl https://github.com/njlyon0/supportr

RemoteRef HEAD

RemoteSha 9f633ac5bec3cac836e467195f4079df261c742c

1

https://github.com/njlyon0/supportR
https://njlyon0.github.io/supportR/
https://github.com/njlyon0/supportR/issues

2 array_melt

Contents

array_melt . 2
count . 3
crop_tri . 4
date_check . 4
date_format_guess . 5
diff_check . 6
force_num . 7
github_ls . 8
github_ls_single . 9
github_tree . 9
name_vec . 10
nms_ord . 11
num_check . 12
ordination . 13
pcoa_ord . 14
replace_non_ascii . 16
rmd_export . 17
safe_rename . 18
summary_table . 19
tabularize_md . 20
theme_lyon . 21

Index 22

array_melt Melt an Array into a Dataframe

Description

Melts an array of dimensions x, y, and z into a dataframe containing columns x, y, z, and value
where value is whatever was stored in the array at those coordinates.

Usage

array_melt(array = NULL)

Arguments

array (array) array object to melt into a dataframe

Value

(dataframe) object containing the "flattened" array in dataframe format

count 3

Examples

First we need to create an array to melt
Make data to fill the array
vec1 <- c(5, 9, 3)
vec2 <- c(10:15)

Create dimension names (x = col, y = row, z = which matrix)
x_vals <- c("Col_1","Col_2","Col_3")
y_vals <- c("Row_1","Row_2","Row_3")
z_vals <- c("Mat_1","Mat_2")

Make an array from these components
g <- array(data = c(vec1, vec2), dim = c(3, 3, 2),

dimnames = list(x_vals, y_vals, z_vals))

"Melt" the array into a dataframe
array_melt(array = g)

count Count Occurrences of Unique Vector Elements

Description

Counts the number of occurrences of each element in the provided vector. Counting of NAs in
addition to non-NA values is supported.

Usage

count(vec = NULL)

Arguments

vec (vector) vector containing elements to count

Value

(dataframe) two-column dataframe with as many rows as there are unique elements in the provided
vector. First column is named "value" and includes the unique elements of the vector, second
column is named "count" and includes the number of occurrences of each vector element.

Examples

Count instances of vector elements
count(vec = c(1, 1, NA, "a", 1, "a", NA, "x"))

4 date_check

crop_tri Crop a Triangle from Data Object

Description

Accepts a symmetric data object and replaces the chosen triangle with NAs. Also allows user to
choose whether to keep or drop the diagonal of the data object

Usage

crop_tri(data = NULL, drop_tri = "upper", drop_diag = FALSE)

Arguments

data (dataframe, dataframe-like, or matrix) symmetric data object to remove one of
the triangles from

drop_tri (character) which triangle to replace with NAs, either "upper" or "lower"

drop_diag (logical) whether to drop the diagonal of the data object (defaults to FALSE)

Value

(dataframe or dataframe-like) data object with desired triangle removed and either with or without
the diagonal

Examples

Define a simple matrix wtih symmetric dimensions
mat <- matrix(data = c(1:2, 2:1), nrow = 2, ncol = 2)

Crop off it's lower triangle
supportR::crop_tri(data = mat, drop_tri = "lower", drop_diag = FALSE)

date_check Check Columns for Non-Dates

Description

Identifies any elements in the column(s) that would be changed to NA if as.Date is used on the
column(s). This is useful for quickly identifying only the "problem" entries of ostensibly date
column(s) that is/are read in as a character.

Usage

date_check(data = NULL, col = NULL)

date_format_guess 5

Arguments

data (dataframe) object containing at least one column of supposed dates

col (character or numeric) name(s) or column number(s) of the column(s) contain-
ing putative dates in the data object

Value

(list) malformed dates from each supplied column in separate list elements

Examples

Make a dataframe to test the function
loc <- c("LTR", "GIL", "PYN", "RIN")
time <- c("2021-01-01", "2021-01-0w", "1990", "2020-10-xx")
time2 <- c("1880-08-08", "2021-01-02", "1992", "2049-11-01")
time3 <- c("2022-10-31", "tomorrow", "1993", NA)

Assemble our vectors into a dataframe
sites <- data.frame("site" = loc, "first_visit" = time, "second" = time2, "third" = time3)

Use `date_check()` to return only the entries that would be lost
date_check(data = sites, col = c("first_visit", "second", "third"))

date_format_guess Identify Probable Format for Ambiguous Date Formats

Description

In a column containing multiple date formats (e.g., MM/DD/YYYY, "YYYY/MM/DD, etc.) identi-
fies probable format of each date. Provision of a grouping column improves inference. Any formats
that cannot be determined are flagged as "FORMAT UNCERTAIN" for human double-checking.
This is useful for quickly sorting the bulk of ambiguous dates into clear categories for later condi-
tional wrangling.

Usage

date_format_guess(
data = NULL,
date_col = NULL,
groups = TRUE,
group_col = NULL,
return = "dataframe",
quiet = FALSE

)

6 diff_check

Arguments

data (dataframe) object containing at least one column of ambiguous dates
date_col (character) name of column containing ambiguous dates
groups (logical) whether groups exist in the dataframe / should be used (defaults to

TRUE)
group_col (character) name of column containing grouping variable
return (character) either "dataframe" or "vector" depending on whether the user wants

the date format "guesses" returned as a new column on the dataframe or a vector
quiet (logical) whether certain optional messages should be displayed (defaults to

FALSE)

Value

(dataframe or character) object containing date format guesses

Examples

Create dataframe of example ambiguous dates & grouping variable
my_df <- data.frame('data_enterer' = c('person A', 'person B',

'person B', 'person B',
'person C', 'person D',
'person E', 'person F',
'person G'),

'bad_dates' = c('2022.13.08', '2021/2/02',
'2021/2/03', '2021/2/04',
'1899/1/15', '10-31-1901',
'26/11/1901', '08.11.2004',
'6/10/02'))

Now we can invoke the function!
date_format_guess(data = my_df, date_col = "bad_dates",
group_col = "data_enterer", return = "dataframe")

If preferred, do it without groups and return a vector
date_format_guess(data = my_df, date_col = "bad_dates",
groups = FALSE, return = "vector")

diff_check Compare Difference Between Two Vectors

Description

Reflexively compares two vectors and identifies (1) elements that are found in the first but not the
second (i.e., "lost" components) and (2) elements that are found in the second but not the first (i.e.,
"gained" components). This is particularly helpful when manipulating a dataframe and comparing
what columns are lost or gained between wrangling steps. Alternately it can compare the contents
of two columns to see how two dataframes differ.

force_num 7

Usage

diff_check(old = NULL, new = NULL, sort = TRUE, return = FALSE)

Arguments

old (vector) starting / original object

new (vector) ending / modified object

sort (logical) whether to sort the difference between the two vectors

return (logical) whether to return the two vectors as a 2-element list

Value

No return value (unless return = TRUE), called for side effects. If return = TRUE, returns a two-
element list

Examples

Make two vectors
vec1 <- c("x", "a", "b")
vec2 <- c("y", "z", "a")

Compare them!
diff_check(old = vec1, new = vec2, return = FALSE)

Return the difference for later use
diff_out <- diff_check(old = vec1, new = vec2, return = TRUE)
diff_out

force_num Force Coerce to Numeric

Description

Coerces a vector into a numeric vector and automatically silences NAs introduced by coercion
warning. Useful for cases where non-numbers are known to exist in vector and their coercion to
NA is expected / unremarkable. Essentially just a way of forcing this coercion more succinctly than
wrapping as.numeric in suppressWarnings.

Usage

force_num(x = NULL)

Arguments

x (non-numeric) vector containing elements to be coerced into class numeric

8 github_ls

Value

(numeric) vector of numeric values

Examples

Coerce a character vector to numeric without throwing a warning
force_num(x = c(2, "A", 4))

github_ls List Objects in a GitHub Repository

Description

Accepts a GitHub repository URL and identifies all files in the specified folder. If no folder is
specified, lists top-level repository contents. Recursive listing of sub-folders is supported by an
additional argument. This function only works on repositories (public or private) to which you have
access.

Usage

github_ls(repo = NULL, folder = NULL, recursive = TRUE, quiet = FALSE)

Arguments

repo (character) full URL for a GitHub repository (including "github.com")

folder (NULL/character) either NULL or the name of the folder to list. If NULL, the
top-level contents of the repository will be listed

recursive (logical) whether to recursively list contents (i.e., list contents of sub-folders
identified within previously identified sub-folders)

quiet (logical) whether to print an informative message as the contents of each folder
is being listed

Value

(dataframe) three-column dataframe including (1) the names of the contents, (2) the type of each
content item (e.g., file/directory/etc.), and (3) the full path from the starting folder to each item

Examples

Not run:
List complete contents of the `supportR` package repository
github_ls(repo = "https://github.com/njlyon0/supportR", recursive = TRUE, quiet = FALSE)

End(Not run)

github_ls_single 9

github_ls_single List Objects in a Single Folder of a GitHub Repository

Description

Accepts a GitHub repository URL and identifies all files in the specified folder. If no folder is
specified, lists top-level repository contents. This function only works on repositories (public or
private) to which you have access.

Usage

github_ls_single(repo = NULL, folder = NULL)

Arguments

repo (character) full URL for a GitHub repository (including "github.com")

folder (NULL/character) either NULL or the name of the folder to list. If NULL, the
top-level contents of the repository will be listed

Value

(dataframe) two-column dataframe including (1) the names of the contents and (2) the type of each
content item (e.g., file/directory/etc.)

Examples

Not run:
List contents of the top-level of the `supportR` package repository
github_ls_single(repo = "https://github.com/njlyon0/supportR")

End(Not run)

github_tree Create File Tree of a GitHub Repository

Description

Recursively identifies all files in a GitHub repository and creates a file tree using the data.tree
package to create a simple, human-readable visualization of the folder hierarchy. Folders can be
specified for exclusion in which case the number of elements within them is listed but not the
names of those objects. This function only works on repositories (public or private) to which you
have access.

Usage

github_tree(repo = NULL, exclude = NULL, quiet = FALSE)

10 name_vec

Arguments

repo (character) full URL for a github repository (including "github.com")
exclude (character) vector of folder names to exclude from the file tree. If NULL (the

default) no folders are excluded
quiet (logical) whether to print an informative message as the contents of each folder

is being listed and as the tree is prepared from that information

Value

(node / R6) data.tree package object class

Examples

Not run:
Create a file tree for the `supportR` package GitHub repository
github_tree(repo = "github.com/njlyon0/supportR", exclude = c("man", "docs", ".github"))

End(Not run)

name_vec Create Named Vector

Description

Create a named vector in a single line without either manually defining names at the outset (e.g.,
c("name_1" = 1, "name_2" = 2, ...) or spending a second line to assign names to an existing
vector (e.g., names(vec) <- c("name_1", "name_2", ...)). Useful in cases where you need a
named vector within a pipe and don’t want to break into two pipes just to define a named vector
(see tidyr::separate_wider_position)

Usage

name_vec(content = NULL, name = NULL)

Arguments

content (vector) content of vector
name (vector) names to assign to vector (must be in same order)

Value

(named vector) vector with contents from the content argument and names from the name argument

Examples

Create a named vector
name_vec(content = 1:10, name = paste0("text_", 1:10))

nms_ord 11

nms_ord Publication-Quality Non-metric Multi-dimensional Scaling (NMS)
Ordinations

Description

[Superseded]
This function has been superseded by ordination because this is just a special case of that function.
Additionally, ordination provides users much more control over the internal graphics functions
used to create the fundamental elements of the graph

Produces Non-Metric Multi-dimensional Scaling (NMS) ordinations for up to 10 groups. Assigns
a unique color for each group and draws an ellipse around the standard deviation of the points.
Automatically adds stress (see vegan::metaMDS for explanation of "stress") as legend title. Because
there are only five hollow shapes (see ?graphics::pch()) all shapes are re-used a maximum of 2
times when more than 5 groups are supplied.

Usage

nms_ord(
mod = NULL,
groupcol = NULL,
title = NA,
colors = c("#41b6c4", "#c51b7d", "#7fbc41", "#d73027", "#4575b4", "#e08214", "#8073ac",

"#f1b6da", "#b8e186", "#8c96c6"),
shapes = rep(x = 21:25, times = 2),
lines = rep(x = 1, times = 10),
pt_size = 1.5,
pt_alpha = 1,
lab_text_size = 1.25,
axis_text_size = 1,
leg_pos = "bottomleft",
leg_cont = unique(groupcol)

)

Arguments

mod (metaMDS/monoMDS) object returned by vegan::metaMDS

groupcol (dataframe) column specification in the data that includes the groups (accepts
either bracket or $ notation)

title (character) string to use as title for plot

colors (character) vector of colors (as hexadecimal codes) of length >= group levels
(default not colorblind safe because of need for 10 built-in unique colors)

shapes (numeric) vector of shapes (as values accepted by pch) of length >= group levels

lines (numeric) vector of line types (as integers) of length >= group levels

pt_size (numeric) value for point size (controlled by character expansion i.e., cex)

12 num_check

pt_alpha (numeric) value for transparency of points (ranges from 0 to 1)

lab_text_size (numeric) value for axis label text size

axis_text_size (numeric) value for axis tick text size

leg_pos (character or numeric) legend position, either numeric vector of x/y coordinates
or shorthand accepted by graphics::legend

leg_cont (character) vector of desired legend entries. Defaults to unique entries in groupcol
argument (this argument provided in case syntax of legend contents should differ
from data contents)

Value

(plot) base R ordination with an ellipse for each group

Examples

Use data from the vegan package
utils::data("varespec", package = 'vegan')
resp <- varespec

Make some columns of known number of groups
factor_4lvl <- c(rep.int("Trt1", (nrow(resp)/4)),

rep.int("Trt2", (nrow(resp)/4)),
rep.int("Trt3", (nrow(resp)/4)),
rep.int("Trt4", (nrow(resp)/4)))

And combine them into a single data object
data <- cbind(factor_4lvl, resp)

Actually perform multidimensional scaling
mds <- vegan::metaMDS(data[-1], autotransform = FALSE, expand = FALSE, k = 2, try = 50)

With the scaled object and original dataframe we can use this function
nms_ord(mod = mds, groupcol = data$factor_4lvl,

title = '4-Level NMS', leg_pos = 'topright',
leg_cont = as.character(1:4))

num_check Check Columns for Non-Numbers

Description

Identifies any elements in the column(s) that would be changed to NA if as.numeric is used on the
column(s). This is useful for quickly identifying only the "problem" entries of ostensibly numeric
column(s) that is/are read in as a character.

Usage

num_check(data = NULL, col = NULL)

ordination 13

Arguments

data (dataframe) object containing at least one column of supposed numbers

col (character or numeric) name(s) or column number(s) of the column(s) contain-
ing putative numbers in the data object

Value

(list) malformed numbers from each supplied column in separate list elements

Examples

Create dataframe with a numeric column where some entries would be coerced into NA
spp <- c("salmon", "bass", "halibut", "eel")
ct <- c(1, "14x", "_23", 12)
ct2 <- c("a", "2", "4", "0")
ct3 <- c(NA, "Y", "typo", "2")
fish <- data.frame("species" = spp, "count" = ct, "num_col2" = ct2, "third_count" = ct3)

Use `num_check()` to return only the entries that would be lost
num_check(data = fish, col = c("count", "num_col2", "third_count"))

ordination Create an Ordination with Ellipses for Groups

Description

Produces a Nonmetric Multidimensional Scaling (NMS) or Principal Coordinate Analysis (PCoA)
for up to 10 groups. Draws an ellipse around the standard deviation of the points in each group.
By default, assigns a unique color (colorblind-safe) and point shape for each group. If the user
supplies colors/shapes then the function can support more than 10 groups. For NMS ordinations,
includes the stress as the legend title (see ?vegan::metaMDS for explanation of "stress"). For PCoA
ordinations includes the percent variation explained parenthetically in the axis labels.

Usage

ordination(mod = NULL, grps = NULL, ...)

Arguments

mod (pcoa | monoMDS/metaMDS) object returned by ape::pcoa or vegan::metaMDS

grps (vector) vector of categorical groups for data. Must be same length as number
of rows in original data object

... additional arguments passed to graphics::plot, graphics::points, scales::alpha,
vegan::ordiellipse, or graphics::legend. Open a GitHub Issue if function
must support additional arguments

14 pcoa_ord

Value

(plot) base R ordination with an ellipse for each group

Examples

Use data from the vegan package
utils::data("varespec", package = 'vegan')

Make some columns of known number of groups
treatment <- c(rep.int("Trt1", (nrow(varespec)/4)),

rep.int("Trt2", (nrow(varespec)/4)),
rep.int("Trt3", (nrow(varespec)/4)),
rep.int("Trt4", (nrow(varespec)/4)))

And combine them into a single data object
data <- cbind(treatment, varespec)

Get a distance matrix from the data
dist <- vegan::vegdist(varespec, method = 'kulczynski')

Perform PCoA / NMS
pcoa_mod <- ape::pcoa(dist)
nms_mod <- vegan::metaMDS(data[-1], autotransform = FALSE, expand = FALSE, k = 2, try = 50)

Create PCoA ordination (with optional agruments)
ordination(mod = pcoa_mod, grps = data$treatment,

bg = c("red", "blue", "purple", "orange"),
lty = 2, col = "black")

Create NMS ordination
ordination(mod = nms_mod, grps = data$treatment, alpha = 0.3,

x = "topright", legend = LETTERS[1:4])

pcoa_ord Publication-Quality Principal Coordinates Analysis (PCoA) Ordina-
tions

Description

[Superseded]
This function has been superseded by ordination because this is just a special case of that function.
Additionally, ordination provides users much more control over the internal graphics functions
used to create the fundamental elements of the graph

Produces Principal Coordinates Analysis (PCoA) ordinations for up to 10 groups. Assigns a unique
color for each group and draws an ellipse around the standard deviation of the points. Automatically
adds percent of variation explained by first two principal component axes parenthetically to axis
labels. Because there are only five hollow shapes (see ?graphics::pch) all shapes are re-used a
maximum of 2 times when more than 5 groups are supplied.

pcoa_ord 15

Usage

pcoa_ord(
mod = NULL,
groupcol = NULL,
title = NA,
colors = c("#41b6c4", "#c51b7d", "#7fbc41", "#d73027", "#4575b4", "#e08214", "#8073ac",

"#f1b6da", "#b8e186", "#8c96c6"),
shapes = rep(x = 21:25, times = 2),
lines = rep(x = 1, times = 10),
pt_size = 1.5,
pt_alpha = 1,
lab_text_size = 1.25,
axis_text_size = 1,
leg_pos = "bottomleft",
leg_cont = unique(groupcol)

)

Arguments

mod (pcoa) object returned by ape::pcoa

groupcol (dataframe) column specification in the data that includes the groups (accepts
either bracket or $ notation)

title (character) string to use as title for plot

colors (character) vector of colors (as hexadecimal codes) of length >= group levels
(default not colorblind safe because of need for 10 built-in unique colors)

shapes (numeric) vector of shapes (as values accepted by pch) of length >= group levels

lines (numeric) vector of line types (as integers) of length >= group levels

pt_size (numeric) value for point size (controlled by character expansion i.e., cex)

pt_alpha (numeric) value for transparency of points (ranges from 0 to 1)

lab_text_size (numeric) value for axis label text size

axis_text_size (numeric) value for axis tick text size

leg_pos (character or numeric) legend position, either numeric vector of x/y coordinates
or shorthand accepted by graphics::legend

leg_cont (character) vector of desired legend entries. Defaults to unique entries in groupcol
argument (this argument provided in case syntax of legend contents should differ
from data contents)

Value

(plot) base R ordination with an ellipse for each group

Examples

Use data from the vegan package
data("varespec", package = 'vegan')

16 replace_non_ascii

resp <- varespec

Make some columns of known number of groups
factor_4lvl <- c(rep.int("Trt1", (nrow(resp)/4)),

rep.int("Trt2", (nrow(resp)/4)),
rep.int("Trt3", (nrow(resp)/4)),
rep.int("Trt4", (nrow(resp)/4)))

And combine them into a single data object
data <- cbind(factor_4lvl, resp)

Get a distance matrix from the data
dist <- vegan::vegdist(resp, method = 'kulczynski')

Perform a PCoA on the distance matrix to get points for an ordination
pnts <- ape::pcoa(dist)

Test the function for 4 groups
pcoa_ord(mod = pnts, groupcol = data$factor_4lvl)

replace_non_ascii Replace Non-ASCII Characters with Comparable ASCII Characters

Description

Finds all non-ASCII (American Standard Code for Information Interchange) characters in a char-
acter vector and replaces them with ASCII characters that are as visually similar as possible. For
example, various special dash types (e.g., em dash, en dash, etc.) are replaced with a hyphen. The
function will return a warning if it finds any non-ASCII characters for which it does not have a
hard-coded replacement. Please open a GitHub Issue if you encounter this warning and have a
suggestion for what the replacement character should be for that particular character.

Usage

replace_non_ascii(x = NULL, include_letters = FALSE)

Arguments

x (character) vector in which to replace non-ASCII characters
include_letters

(logical) whether to include letters with accents (e.g., u with an umlaut, etc.).
Defaults to FALSE

Value

(character) vector where all non-ASCII characters have been replaced by ASCII equivalents

https://github.com/njlyon0/supportR/issues

rmd_export 17

Examples

Make a vector of the hexadecimal codes for several non-ASCII characters
This function accepts the characters themselves but CRAN checks do not
non_ascii <- c("\u201C", "\u00AC", "\u00D7")

Invoke function
(ascii <- replace_non_ascii(x = non_ascii))

rmd_export Knit an R Markdown File and Export to Google Drive

Description

This function allows you to knit a specified R Markdown file locally and export it to the Google
Drive folder for which you provided a link. NOTE that if you have not used googledrive::drive_auth
this will prompt you to authorize a Google account in a new browser tab. If you do not check the
box in that screen before continuing you will not be able to use this function until you clear your
browser cache and re-authenticate. I recommend invoking drive_auth beforehand to reduce the
chances of this error

Usage

rmd_export(
rmd = NULL,
out_path = getwd(),
out_name = NULL,
out_type = "html",
drive_link

)

Arguments

rmd (character) name and path to R markdown file to knit

out_path (character) path to the knit file’s destination (defaults to path returned by getwd())

out_name (character) desired name for knit file (with or without file suffix)

out_type (character) either "html" or "pdf" depending on what YAML entry you have in
the output: field of your R Markdown file

drive_link (character) full URL of drive folder to upload the knit document

Value

No return value, called to knit R Markdown file

18 safe_rename

Examples

Not run:
Authorize R to interact with GoogleDrive
googledrive::drive_auth()
NOTE: See warning about possible misstep at this stage

Use `rmd_export()` to knit and export an .Rmd file
rmd_export(rmd = "my_markdown.Rmd", in_path = getwd(), out_path = getwd(),

out_name = "my_markdown", out_type = "html",
drive_link = "<Google Drive folder URL>")

End(Not run)

safe_rename Safely Rename Columns in a Dataframe

Description

Replaces specified column names with user-defined vector of new column name(s). This operation
is done "safely" because it specifically matches each ’bad’ name with its corresponding ’good’
name and thus minimizes the risk of accidentally replacing the wrong column name.

Usage

safe_rename(data = NULL, bad_names = NULL, good_names = NULL)

Arguments

data (dataframe or dataframe-like) object with column names that match the values
passed to the bad_names argument

bad_names (character) vector of column names to replace in original data object. Order does
not need to match data column order but must match the good_names vector
order

good_names (character) vector of column names to use as replacements for data object. Order
does not need to match data column order but must match the good_names vector
order

Value

(dataframe or dataframe-like) with renamed columns

summary_table 19

Examples

Make a dataframe to demonstrate
df <- data.frame("first" = 1:3, "middle" = 4:6, "second" = 7:9)

Invoke the function
safe_rename(data = df, bad_names = c("second", "middle"),

good_names = c("third", "second"))

summary_table Generate Summary Table for Supplied Response and Grouping Vari-
ables

Description

Calculates mean, standard deviation, sample size, and standard error of a given response vari-
able within user-defined grouping variables. This is meant as a convenience instead of doing
dplyr::group_by followed by dplyr::summarize iteratively themselves.

Usage

summary_table(
data = NULL,
groups = NULL,
response = NULL,
drop_na = FALSE,
round_digits = 2

)

Arguments

data (dataframe or dataframe-like) object with column names that match the values
passed to the groups and response arguments

groups (character) vector of column names to group by

response (character) name of the column name to calculate summary statistics for (the
column must be numeric)

drop_na (logical) whether to drop NAs in grouping variables. Defaults to FALSE

round_digits (numeric) number of digits to which mean, standard deviation, and standard
error should be rounded

Value

(dataframe) summary table containing the mean, standard deviation, sample size, and standard error
of the supplied response variable

20 tabularize_md

tabularize_md Make a Markdown File into a Table

Description

Accepts one markdown file (i.e., "md" file extension) and returns its content as a table. Nested
heading structure in markdown file–as defined by hashtags / pounds signs (#)–is identified and
preserved as columns in the resulting tabular format. Each line of non-heading content in the file is
preserved in the right-most column of one row of the table.

Usage

tabularize_md(file = NULL)

Arguments

file (character/url connection) name and file path of markdown file to transform into
a table or a connection object to a URL of a markdown file (see ?base::url for
more details)

Value

(dataframe) table with one additional column than there are heading levels in the document (e.g., if
first and second level headings are in the document, the resulting table will have three columns) and
one row per line of non-heading content in the markdown file.

Examples

Not run:
Identify URL to the NEWS.md file in `supportR` GitHub repo
md_cxn <- url("https://raw.githubusercontent.com/njlyon0/supportR/main/NEWS.md")

Transform it into a table
md_df <- tabularize_md(file = md_cxn)

Close connection (just good housekeeping to do so)
close(md_cxn)

Check out the table format
str(md_df)

End(Not run)

theme_lyon 21

theme_lyon Complete ggplot2 Theme for Non-Data Aesthetics

Description

Custom alternative to the ggtheme options built into ggplot2. Removes gray boxes and grid lines
from plot background. Increases font size of tick marks and axis labels. Removes gray box from
legend background and legend key. Removes legend title.

Usage

theme_lyon(title_size = 16, text_size = 13)

Arguments

title_size (numeric) size of font in axis titles

text_size (numeric) size of font in tick labels

Value

(ggplot theme) list of ggplot2 theme elements

Index

array_melt, 2

count, 3
crop_tri, 4

date_check, 4
date_format_guess, 5
diff_check, 6

force_num, 7

github_ls, 8
github_ls_single, 9
github_tree, 9

name_vec, 10
nms_ord, 11
num_check, 12

ordination, 13

pcoa_ord, 14

replace_non_ascii, 16
rmd_export, 17

safe_rename, 18
summary_table, 19

tabularize_md, 20
theme_lyon, 21

22

	array_melt
	count
	crop_tri
	date_check
	date_format_guess
	diff_check
	force_num
	github_ls
	github_ls_single
	github_tree
	name_vec
	nms_ord
	num_check
	ordination
	pcoa_ord
	replace_non_ascii
	rmd_export
	safe_rename
	summary_table
	tabularize_md
	theme_lyon
	Index

